High-Pressure/High-Temperature Phase Relations and Vibrational Spectra of CsSbF₆

W. H. J. DE BEER* AND ANTON M. HEYNS

Department of Physical Chemistry, University of South Africa, P.O. Box 392, Pretoria, South Africa

AND P. W. RICHTER AND J. B. CLARK

National Physical Research Laboratory, South African Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, South Africa

Received June 29, 1979; in revised form September 12, 1979

CsSbF₆(II) under ambient conditions is trigonal, space group $D_{3d}^5-R\bar{3}m$. At 187.8°C it undergoes a phase transition with an enthalpy change of 5.267 ± 0.316 kJ mole⁻¹, to phase CsSbF₆(I). CsSbF₆ decomposes with loss of fluorine at atmospheric pressure at high temperatures, but under pressure the decomposition is prevented and a melting point of 310°C at atmospheric pressure can be inferred. The II/I phase boundary and melting curve were studied as functions of pressure. The infrared and Raman spectra of CsSbF₆(II) were studied in the temperature range of -256 to 20°C, at ambient pressure. The crystal chemistry of the CsSbF₆ and its relationship with other related compounds is discussed.

Introduction

The high-pressure phase relations, vibrational spectra, and crystal chemistry have been presented for KPF₆ (1), KAsF₆ (2), KSbF₆ (3), and NaPF₆ (4).

CsSbF₆ is reported (5) to be trigonal with space group $D_{3d}^5 - R\bar{3}m$ at ambient temperature. The structure can be thought of as an arrangement of Cs⁺ and SbF₆⁻ ions in a distorted CsCl configuration.

The vibrational spectra of the SbF₆⁻ ion have been studied extensively (3, 6); however, only a portion of the infrared spectrum of CsSbF₆ has been reported (7).

The present investigation reports the

phase behavior of $CsSbF_6$ between $-256^{\circ}C$ and the melting point at 310°C. Phase behavior at high pressure and high temperature is also reported. Finally, infrared, farinfrared, and Raman spectra are reported from -256 to 20°C.

Experimental

The CsSbF₆ was prepared from Sb₂O₅, Cs₂CO₃, and an excess of hydrofluoric acid using the method described by Kolditz and Rehak (8*a*). Antimony was determined iodometrically according to Mazeika and Neumann (8*b*) after addition of boric acid. The fluorine content was determined by the methods described by Palmer (9) and Vogel (10). The chlorine is determined by Volhard's method from which the fluorine

^{*} Permanent address: Department of Chemistry, Pretoria Technikon, 420 Church Street, Pretoria, South Africa.

can be calculated. An Sb:F value of 1:5.95 was found.

X-Ray powder diffraction patterns for identification and comparison were recorded on a Huber Guinier camera using monochromatized Cu $K\alpha_1$ radiation ($\lambda =$ 1.54051 Å). Si was used as an internal calibrant and both film and counter techniques were employed. The diffraction pattern obtained agreed with that reported in the ASTM file (11).

The thermal behavior of $CsSbF_6$ at temperatures above room temperature was determined by DSC techniques on a DuPont 990 thermal analyzer. Heating rates varied between 2 and 5°C min⁻¹. The sensitivity of the calorimeter varied between 0.1 and 1 mcal sec⁻¹. Peak areas were used to calculate enthalpy values. All temperatures and enthalpy measurements were calibrated with respect to indium and lead standards.

Pressure was generated in a piston-cylinder device (12). Phase transitions were detected by differential thermal analysis (DTA), using Chromel-Alumel thermocouples. Experimental techniques have been described in detail elsewhere (13, 14). Oven assemblies were constructed of talc. Samples were contained in nickel capsules with no evidence of contamination.

The infrared spectra were recorded in the form of KBr pellets or najol or mineral oil mulls on KBr, CsBr, or CsI windows, using a Perkin-Elmer Model 621 spectrophotometer. Polyethylene windows were used for the recording of the far-infrared spectra on a Beckmann FS 720 interferometer. These spectra were recorded with a resolution of 2 cm⁻¹. Low-temperature infrared and farinfrared spectra were obtained by means of a RIIC variable temperature unit.

The Raman spectra were recorded on a Spex Ramalog instrument consisting of a double spectrometer Model 1401 equipped with photon counting electronics and a thermoelectrically cooled FW 130 photomultiplier. The excitation source was the

FIG. 1. The phase diagram of CsSbF₆.

4880-Å line of a coherent radiation Ar^+ -ion laser at a strength of about 50 mW at the sample. The spectral slit width used in the measurements was 2 cm⁻¹. For the lowtemperature Raman spectra a Spectrim TM Cryocooler, obtained from Cryogenic Technology, Inc., was used to cool the samples down to 17 K.

Results

Thermal Studies at Atmospheric Pressure

A solid-solid transition was discovered

FIG. 2. Typical DTA signals obtained for CsSbF_{ston}: (i) II/I boundary at 1.84 GPa, 665°C; (ii) IAliquid boundary at 0.82 GPa, 654°C.

FIG. 3. Far-infrared spectra of $CsSbF_6$ at (a) 20°C and (b) -190°C.

at 187.8°C with an enthalpy change of 5.267 \pm 0.316 kJ mole⁻¹. At temperatures of approximately 310°C melting occurred with simultaneous decomposition and loss of fluorine. The fluorine was identified by its characteristic odor, attack on glass and aluminum capsules, and X-ray diffraction examination of products upon cooling. The products were identified as antomony oxide and cesium fluoride.

High-Pressure Studies

The high-pressure phase diagram of $CsSbF_6$ is shown in Fig. 1. Typical DTA signals obtained on the II/I boundary are shown in Fig. 2i. The II/I transition boundary rises steeply with an initial slope of 274.36°C GPa⁻¹ and was followed to ~ 2.3 GPa. The data obtained can be described by:

$$t(^{\circ}C) = 187.8 + 274.36 P - 22.345 P^{2}$$

(*P* in GPa),

with a standard deviation of 4.9°C. On steep phase boundaries the major experimental uncertainty is a pressure uncertainty and this translates into a relatively high temperature standard deviation.

Under high pressure, the decomposition upon melting was initially suppressed. The melting curve could therefore be determined to ~1.3 GPa where $CsSbF_6$ melts at ~868°C. At higher pressures, and more important, higher temperatures, clear evidence was found that $CsSbF_6$ decomposed. For this reason only data below 1.3 GPa are reported. Typical DTA signals obtained on the melting curve are shown in Fig. 2ii. The melting curve also rises steeply with increasing pressure with an initial slope of 427.6°C GPa⁻¹. The data can be described by:

$$t(^{\circ}C) = 310.0 + 427.6P$$
 (P in GPa),

with a standard deviation of 10.8°C.

FIG. 4. Infrared spectra of $CsSbF_6$ at -190° C. The spectra at 20°C showed no changes.

Calculated (20°C) 20°C -190°C Assignment (cm⁻¹) 1300 w 1280-1320 $\nu_1 + \nu_3$ 1260 w 1260 w $\nu_1 + \nu_3$ 1280-1320 950 w 960 w $\nu_3 + \nu_5$ 933-952 845 w 855 w 840-852 $v_2 + v_4$ 670 sh 668 sh ν_3 655 s 658 s ν_3 630-640 635 sh 640 sh $v_2 + v_1$ 560 w 560 w $v_5 + v_4$ 556-565 450-473 450 w 450 w $v_5 + v_6$ 285 sh 288 sh ν_4 276 s 280 s ν_4 180-195 sh 188 w ν_6 66 s 74 s $\nu_{\rm L}$

TABLE II INFRARED SPECTRA OF CsSbF₆ at 20 and -190°C

Crystallography

 $CsSbF_6(II)$ is reported to be trigonal, space group $D_{3d}^5 - R\bar{3}m$ with a = 7.9026 Å and c = 8.2525 Å. The present Guinier powder X-ray diffraction results yielded a = 7.9037 Å and c = 8.2543 Å, in excellent agreement with the ASTM data (11).

Vibrational Spectra of $CsSbF_6(II)$

Under D_{3d}^5 symmetry, the site group symmetries of both the Cs⁺ and SbF₆⁻ ions are D_{3d} and the correlation between the O_{h} point group symmetry of the "free" SbF₆⁻

ions and the site and unit-cell group symmetry of D_{3d} is shown in Table I (15).

The infrared spectra of $CsSbF_6(II)$ are shown in Figs. 3 and 4 and these results are summarized and the absorption bands are assigned in Table II. The assignment of the infrared bands is done by analogy to previous studies of the SbF_6^- ion (3, 6); however, the bands are relatively broad even at lower temperatures and it is therefore difficult to determine whether the infrared active modes ν_3 and ν_4 are split. It does appear as if there is a broad and sometimes ill-defined shoulder on the high-frequency wings of both these modes. In comparison with the infrared bands, the Raman-active vibrations ν_1 , ν_2 , and ν_5 (see Table III) are narrow and well-defined bands (Fig. 5) and the $A_{1g}-E_g$ splitting of ν_5 is clearly evident even at room temperature. At 17 K, the modes ν_2 , ν_{5a} , and ν_{5b} shift to slightly higher frequencies, but no additional components can be discerned and it is therefore shown that $CsSbF_6(II)$ does not undergo any additional phase transitions at low temperatures. We were unfortunately unable to grow large single crystals of $CsSbF_6(II)$ but we have recorded polarized Raman spectra of small single crystals of this compound. They were too small to obtain good polarized data. However, the spectra distinctly showed that the 276 cm⁻¹ component of ν_5 belongs to the A_{1g} symmetry, whereas the 283 cm⁻¹ component belongs to the E_q symmetry.

TABLE III Raman Spectra of $CsSbF_6$ at 20 and $-256^\circ C$

20°C			−256°C			Assign
cm ⁻¹	RI	HW (cm ⁻¹)	cm ⁻¹	RI	HW (cm ⁻¹)	ment
650	100	5	651	100	3	ν_1
570	13	6	576	14	3	ν_2
283	40	4	288	30	4	ν_5
276	26	4	279	20	5'	ν_5

1300 w

FIG. 5. Raman spectra of polycrystalline $CsSbF_6$ at (a) 20°C and (b) -256°C.

The infrared-inactive mode ν_6 under O_h symmetry is activated under D_{3d} symmetry and a broad shoulder can de discerned at 180–195 cm⁻¹ at room temperature (Table II), which is in agreement with the frequency region in which ν_6 was previously reported to occur (3). At lower temperatures a relatively distinct component is observed at 188 cm⁻¹, which is in agreement with the predictions in the correlation table, viz., ν_6 is observed not to be split.

The rotational motions of the SbF_6^- ions form the presentation $\Gamma_{\rm rot} = A_{2g}(-) + E_{g}$ (R) and the translational modes form the representation $\Gamma_{\text{trans}} = A_{2u}$ (infrared) + E_u (infrared). It is therefore possible to observe an E_g rotational mode in the Raman spectrum of $CsSbF_6$ and two translation modes in the infrared spectra. Unfortunately, fluorescence was always present in the Raman spectra of $CsSbF_6(II)$ at lower frequencies, with the result that reliable spectra could not be obtained below ~ 100 cm⁻¹; since the rotational mode of the SbF_6^- ion has previously been reported to occur at \sim 70 cm⁻¹ in TlSbF₆ (16), it is possible that this mode was obscured by fluorescence effects in CsSbF₆(II). In the case of the translational modes, Fig. 3 shows that a very well-defined peak is observed at 66 cm⁻¹ at room temperature, which shifts upward to 74 cm⁻¹ upon cooling of the sample to 90 K.

However, this band remains single at lower temperatures and it is therefore possible either that the second component of the translational mode is too weak in order to be observed, or that it lies at very low frequencies and could therefore not be observed in the present work.

Discussion

The vibrational spectra of $CsSbF_6(II)$ are very typical of those of RMX_6 crystals with unimolecular rhombohedral cells (2, 16) which can be regarded as slightly distorted arrangements of CsCl. These spectra exhibit single Raman lines for v_1 and v_2 but v_5 is very distinctly split into the predicted $A_{1q}-E_q$ components under D_{3d}^5 . TlSbF₆ has the identical structure of $CsSbF_6(II)$ and it is therefore not unexpected that their Raman spectra show a close correspondence. In TISbF₆ the A_{1g} - E_g splitting of ν_5 amounts to 13 cm⁻¹, compared with the corresponding amount of 7 cm⁻¹ in CsSbF₆(II) at room temperature, which increases only slightly to 9 cm⁻¹ at -256° C. These results probably point to a lesser distortion of the $SbF_6^$ ion in $CsSbF_6(II)$ than in $TlSbF_6$. The frequencies of the two remaining Raman-active modes, viz., ν_1 and ν_2 agree within ± 4 cm^{-1} in the two compounds. On the other hand, the infrared absorption peaks are relatively broad with the result that the $A_{2u}-E_u$ splittings are not so obvious, as is evident in Figs. 3 and 4. In ν_3 , in particular, the occurrence of any weak features which can possibly be attributed to this splitting is masked by the appearance of combination bands. The occurrence of ν_6 as a single band supports the D_{3d}^{5} structure for CsSbF₆.

Using the experimental values obtained for the transition enthalpy and slope of the I/II transition one can calculate a volume

change of 0.3 cm³ mole⁻¹. CsSbF₆(II) has a B2-related structure and the question arises as to the nature of $CsSbF_6(I)$. The $CsSbF_6(I/II)$ transition has a steep initial slope, viz., 274.4°C GPa⁻¹ which is similar to that obtained for the $KPF_6(I/II)$ transition, viz., 211°C GPa⁻¹. It is therefore tempting to assume that the $CsSbF_6(I)$ phase may be B1 related as in the case of $KPF_6(I)$. This is almost certainly not the case due to the low volume change associated with the $CsSbF_6(I/II)$ transition, viz., $0.3 \text{ cm}^3 \text{ mole}^{-1} \text{ compared with } 4.9 \text{ cm}^3$ mole⁻¹ for the KPF₆(I/II) transition. The $CsSbF_6(I/II)$ transition therefore probably has more order-disorder character with the high-temperature $CsSbF_6(I)$ phase remaining B2 related.

Acknowledgments

The authors would like to thank Mr. A. I. Kingon for valuable discussions. Calculations were carried out on the IBM System 360/65H of the National Research Institute for Mathematical Sciences. One of the authors, A. M. Heyns, wishes to thank the CSIR for financial support.

References

1. A. M. HEYNS AND C. W. F. T. PISTORIUS, Spectrochim. Acta Part A 30, 99 (1974).

- 2. A. M. HEYNS AND C. W. F. T. PISTORIUS, Spectrochim. Acta Part A 31, 1293 (1975).
- 3. A. M. HEYNS AND C. W. F. T. PISTORIUS, Spectrochim. Acta Part A 32, 535 (1976).
- A. M. HEYNS AND C. W. F. T. PISTORIUS, P. W. RICHTER, AND J. B. CLARK, Spectrochim. Acta Part A 34, 279 (1978), and correction note to be published.
- 5. N. SCHREWELIUS, Ark. Kemi Mineral. Geol. 16B, 1 (1943).
- G. M. BEGUN AND A. C. RUTENBERG, Inorg. Chem. 6, 2212 (1967).
- 7. E. THILO, Z. Chem. 3, 312 (1963).
- (a) V. L. KOLDITZ AND W. REHAK, Z. Anorg. Allg. Chem. 300, 322 (1959).
- 8. (b) W. A. MAZEIKA AND H. M. NEUMANN, Inorg. Chem. 5, 309 (1966).
- 9. W. G. PALMER, in "Experimental Inorganic Chemistry," p. 306, Cambridge (1970).
- A. I. VOGEL (Ed.), in "A Textbook of Quantitative Inorganic Analysis," 3rd ed., p. 269, Longman, New York (1961).
- 11. "Index: Powder Diffraction File," pp. 15-808, ASTM, York, Pa. (1978).
- G. C. KENNEDY AND P. N. LAMORI, in "Progress in Very High Pressure Research" (F. P. Bundy, W. R. Hibbard, and H. M. Strong, Eds.), pp. 304– 313, Wiley, New York (1961).
- 13. P. W. RICHTER AND C. W. F. T. PISTORIUS, J. Solid State Chem. 3, 197 (1971).
- 14. C. W. F. T. PISTORIUS AND J. B. CLARK, High Temp. High Pressures 1, 561 (1969).
- 15. W. G. FATELEY, F. R. DOLLISH, W. R. MCDEVITT, AND F. F. BENTLEY, "Infrared and Raman Selection Rules for Molecular and Lattice Vibrations—The Correlation Method," Wiley-Interscience, New York (1972).
- D. BREITINGER AND U. KRISTEN, J. Solid State Chem. 22, 233 (1977).